

Plant Archives

Journal homepage: http://www.plantarchives.org

DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.017

RESPONSE OF COTTON HYBRIDS TO TIME OF PYRAFLUFEN ETHYL APPLICATION UNDER HIGH DENSITY PLANTING

N. Srikanth^{1*}, A. Geetha¹, Ch. Aruna Kumari¹, T.L. Neelima², Binaya Kumar Parida³ and G.M. Imran⁴

¹Department of Crop Physiology, College of Agriculture, Rajendranagar (PJTAU), Telangana, India. ²Water Technology Centre, College of Agriculture, Rajendranagar (PJTAU), Telangana, India. ³Coromandel International Limited, Kalasiguda, Hyderabad, Telangana, India. ⁴Department of Agronomy, N.M.C.A., Navsari Agricultural University, Navsari, Gujarat, India. *Corresponding author E-mail: reddysrikanth4362@gmail.com (Date of Receiving-03-06-2025; Date of Acceptance-05-08-2025)

ABSTRACT s

A field experiment was conducted during kharif, 2023 at the College Farm, College of Agriculture, PJTAU, Rajendranagar, Hyderabad, Telangana, to assess the influence of cotton hybrids and timing of Pyraflufen ethyl application on defoliation efficiency, boll opening and seed cotton yield under high-density planting system (HDPS). The study was laid out in a Factorial Randomized Block Design (FRBD) with two Bt cotton hybrids: RCH-929 and RCH-971 as Factor I and four defoliant treatments as Factor II: S.: Control, S.: Pyraflufen ethyl @ 1 ml L¹ at 60% boll opening, S₂: Pyraflufen ethyl @ 1 ml L¹ at 80% boll opening and S₂: Pyraflufen ethyl @ 1 ml L¹ at both 60% and 80% boll opening. Results revealed that hybrids did not significantly influence any of the parameters, indicating comparable physiological responses to defoliant spray. However, the timing of defoliant application showed significant effects. Application of Pyraflufen ethyl at 60% boll opening stage (S₃) recorded the highest boll opening percentage (89.3%) and maximum seed cotton yield (2515 kg ha⁻¹), followed by S₂ (80% boll opening), while the lowest yield (1815 kg ha⁻¹) was observed in S₄ despite recording the highest defoliation (92.1%), it led to excessive physiological stress, negatively affecting boll development and yield. The superior performance of the 60% application stage may be attributed to the timely induction of senescence processes, ensuring optimal boll maturation without compromising metabolic balance. The study concludes that a single application of Pyraflufen ethyl @ 1 ml L-1 at 60% boll opening is ideal for maximizing boll opening and seed cotton yield in HDPS cotton.

Key words: Boll opening, Defoliation, Hybrids, Pyraflufen ethyl, Seed yield

Introduction

Cotton (*Gossypium hirsutum* L.) is one of the most important commercial fibre crops in the world, often referred to as the "white gold" due to its significant role in the global textile industry and rural economy. India ranks as the largest producer and second largest exporter of cotton globally, with a cultivated area of approximately 12.5 million hectares and production of 33.5 million bales and productivity of 436 kg ha⁻¹ (Cotton Corporation of India, 2024). Among the major cotton growing states, Gujarat, Maharashtra and Telangana contribute substantially to national output. The high yielding Bt cotton hybrids exhibit varied morphological traits and phenological behaviours that influence defoliation

efficiency and boll maturity synchronization (Nerkar et al., 2017). The selection of appropriate hybrids suited for specific defoliation schedules is thus critical to maximize lint yield and facilitate timely harvesting, especially under high density planting systems (Gunasekaran et al., 2020; Kumar et al., 2021). Timely defoliation in cotton is crucial to facilitate mechanical picking, reduce trash content and enhance lint quality. The physiological crop stage at which defoliants are applied significantly affects boll opening and leaf drop dynamics (Copur et al., 2010; Buttar and Sudeep, 2013). Research has indicated that defoliant efficacy is optimal when applied at 60-80% boll opening, depending on hybrid and environmental conditions (Morgan, 1969; Li et al., 2024). Pyraflufen ethyl, a contact type

protoporphyrinogen oxidase (PPO) inhibitor, has emerged as a promising defoliant with rapid action and low residual toxicity (Miura *et al.*, 2003; Griffin *et al.*, 2010). It induces chlorophyll degradation and cellular membrane damage leading to accelerated leaf senescence. Given the increasing interest in mechanical harvesting and quality fibre production, it becomes imperative to understand the interaction of cotton hybrids with defoliant efficacy at varying crop growth stages. This study was undertaken to evaluate the effect of different hybrids and to identify the most appropriate boll opening stage for Pyraflufen ethyl application to optimize defoliation, boll opening and seed cotton yield.

Materials and Methods

The experiment was carried out at college farm, College of Agriculture, Rajendranagar, PJTAU, Hyderabad. The farm is located at an elevation of 542.3 meters above mean sea level at 17.322069 N latitude, 78.408547 E longitude comes under the Southern Agroclimatic Region of Telangana. The experiment was laid out in Factorial Randomized Block Design (FRBD) with two hybrids as factor I (V₁: RCH-929, V₂: RCH-971) and factor II i.e., S₁: Control, S₂: Pyraflufen Ethyle @1ml L⁻¹ spray at 60% boll opening, S₃: Pyraflufen Ethyle @1ml L⁻¹ spray at 80% boll opening, S₄: Pyraflufen Ethyle @1ml L⁻¹ spray at 60% and 80% boll opening. Cotton crop was sown in kharif, 2023 with spacing of 90 cm \times 15 cm and Recommended dose of fertilizers (120:60:60 N, P₂O₅ K₂O) was applied in the form of urea, Di- Ammonium phosphate (DAP) and muriate of potash (MOP), respectively. Defoliation percentage, Boll opening percentage was recorded at 15 days after spray in each treatment by using the following formula and seed cotton yield was recorded.

Defoliation percentage =
$$\frac{La - Lb}{La} \times 100$$

Where,

La = Number of leaves before treatment

Lb = Number of leaves after treatment

Boll opening percentage =
$$\frac{Ba - Bb}{Ba} \times 100$$

Where,

Ba = Number of bolls before treatment

Bb = Number of bolls after treatment

Results and Discussion

There was no significant effect of hybrids on the defoliation percentage, boll opening percentage and seed cotton yield indicating a similar response from both RCH-971 and RCH-929 hybrids with application of defoliants at different boll opening stages. This may be attributed to the similar genetic background, compact physiology and maturity duration of both hybrids.

Defoliation percentage

The data pertaining to the defoliation percentage demonstrated in Table 1 indicated that defoliation percentage after 60% boll opening stage was significantly higher with application of Pyraflufen ethyl @1 ml L⁻¹ at 60% and 80% boll opening stage (72.1%) and it was on par to Pyraflufen ethyl @ 1 ml L⁻¹ at 60% boll opening stage (71.3%) as compared to other two treatments where there was no defoliant applied at that stage (Fig. 1).

Defoliation percentage after 80% boll opening stage, application of Pyraflufen ethyl @ 1 ml L^{-1} at 60% and 80% boll opening stages (S_4) provided significantly higher defoliation percentage (92.1%) and was superior to other

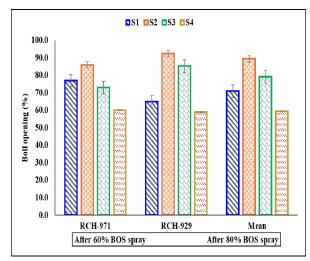


Fig. 1: Response of cotton hybrids to time of Pyraflufen ethyl application on defoliation percentage and boll opening percentage.

N. Srikanth et al.

Table 1: Influence of hybrids and time of Pyraflufen ethyl spray on defoliation percentage of HDPS cotton

102

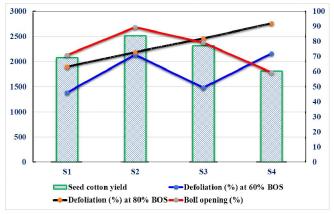
Treatments	No. of	No. of leaves before spraying	aying	After 60%	After 60% boll opening stage spray	tage spray	After 80%	After 80% boll opening stage spray	tage spray
	RCH - 971	RCH - 929	Mean	RCH - 971	RCH - 929	Mean	RCH - 971	RCH - 929	Mean
S_1 : Control	47.3	45.6	46.5	39.6 (28.6) *	52.6 (21.6)	46.1 (25.1)	64.0(10.4)	62.6(8.1)	63.3 (9.2)
S ₂ : Pyraflufen ethyl @ 1ml L ⁻¹ at 60% boll opening	*************************************	39.6	42.2	70.4 (13.3)	72.3 (11.0)	71.3 (12.1)	70.4 (3.9)	75.6(2.7)	73.0 (3.3)
S ₃ : Pyraflufen ethyl @ 1ml L ⁻¹ at 80% boll opening	46.5	42.1	44.3	46.4 (24.9)	52.3 (20.1)	49.3 (22.5)	79.7 (5.2)	83.6(3.2)	82.0 (4.2)
S₄: Pyraflufen ethyl @ 1ml L ⁻¹ at 60% and 80% boll opening	42.8	44.3	43.6	78.6 (9.2)	65.6(15.2)	72.1 (12.2)	91.9 (0.8)	92.3(1.2)	92.1 (1.0)
Mean	45.4	42.9		58.7 (19.0)	60.7 (17.0)		76.5 (5.0)	78.6 (3.8)	
				SEm±	C	Sig.	SEm±	CD	Sig.
Hybrids	IS	-		1.58	4.79	NS	1.82	5.53	SN
Treatments	nts			2.24	6.78	S	2.58	7.83	S
$T \times H$				3.16	9.59	NS	3.65	11.07	NS
Figures in parenthesis are no of leaves still intact on plant	of leaves still in	tact on plant							

igures in parenthesis are no. of leaves still intact on plant.

treatments. This enhanced defoliation is due to the cumulative effect of two applications, which intensifies oxidative stress and accelerates leaf senescence and abscission. Followed by Pyraflufen ethyl @ 1 ml L⁻¹ at 80% boll opening stage (S₃) significantly provided 82.0%, after that S₂: Pyraflufen ethyl @ 1 ml L⁻¹ at 60% boll opening stage (73.0%). In both stages control (S_1) recorded lower defoliation percentage (46.1% and 63.3%, respectively). Defoliation is more in S_2 (80% boll opening stage) as compared to S₂ (60% boll opening stage) but observing the no. of leaves still intact on plant it is less in S₂. This corroborates with Ashraf et al. (2020) who observed late sprayed paraquat @ 1500 ppm at 150 DAS comparatively registered a higher percentage of leaf fall than the earlier sprayed ones (135 DAS).

Boll opening percentage

Among defoliant treatments, significantly higher boll opening percentage (89.3%) was recorded when Pyraflufen ethyl @1 ml L-1 was applied at 60% boll opening stage and it was superior to others. Followed by Pyraflufen ethyl @1 ml L⁻¹ applied at 80% boll opening stage given boll opening percentage (79.2%) as a next best treatment (Table 2 and Fig. 1). Pyraflufen ethyl @ 1 ml L⁻¹ applied at 60% & 80% boll opening stages provided significantly lower boll opening percentage (59.5%) due to the excessive oxidative stress by twice defoliant application. These results confirm the better performance of the defoliant spray at the 60% boll opening stage which might be attributed to the timely induction of physiological processes like ethylene production and leaf senescence, with promoted efficient boll maturation and opening without inducing excessive stress.


These findings match with results reported by Wright et al. (2015), where application of harvest aid materials at 6 to 7 NACB can benefit Pima cotton growers in California as early harvests can be achieved without compromising lint yield or quality. Jajoria et al. (2020) revealed that application of Diquat dibromide 24.5 SL W/V at 1105 g a.i. ha⁻¹ at 60-70 per cent boll opening stage of cotton crop appears to be promising as it gave significantly higher boll opening.

Seed cotton yield

Among the defoliant treatments, application of Pyraflufen ethyl @1 ml L⁻¹ applied at 60% boll opening stage recorded significantly higher seed cotton yield (2515 kg ha⁻¹) superior to other treatments (Table 2 and Fig. 2). Followed by S₃ spaying at 80% boll opening stage (2315 kg ha⁻¹). Whereas defoliant spray at 60% & 80% boll opening stages recorded lower seed cotton yield

Treatments	Boll busting percentage			Seed cotton yield (kg ha ⁻¹)		
	RCH - 971	RCH - 929	Mean	RCH - 971	RCH - 929	Mean
S ₁ : Control	77.1	65.0	71.0	2019	2134	2077
S ₂ : Pyraflufen ethyl @1ml L ⁻¹ at 60% boll opening	86.0	92.5	89.5	2436	2594	2515
S₃: Pyraflufen ethyl @ 1ml L ⁻¹ at 80% boll opening	73.0	85.4	79.2	2145	2484	2315
S₄: Pyraflufen ethyl @ 1ml L ⁻¹ at 60% and 80% boll opening	60.1	59.0	59.5	1862	1767	1815
Mean	73.8	75.3		2116	2245	
	SEm±	CD	Sig.	SEm±	CD	Sig.
Hybrids	1.61	4.88	NS	45.7	138.5	NS
Treatments	2.27	6.90	S	64.6	195.9	S
T×H	3.22	9.76	NS	91 3	277.0	NS

Table 2: Influence of hybrids and time of Pyraflufen ethyl spray on boll bursting percentage and seed cotton yield of cotton.

Fig. 2 : Mean performance of HDPS cotton as influenced by time of Pyraflufen ethyl application.

(1815 kg ha⁻¹) than the control (2077 kg ha⁻¹).

Repeated defoliation in S₄ likely resulted in higher oxidative stress, which is reflected by increased SOD activity and more severe reductions in leaf conductance are indicative of stress-induced metabolic disruption. These physiological imbalances may have reduced boll development and seed filling, ultimately decreasing yield. Whereas defoliant spray at 60% boll opening stage produced more yield owing to optimized sink strength and improved boll filling by balancing the hormonal response with moderate leaf fall. Deol and Brar (2011), Awan *et al.* (2012), Gormus *et al.* (2017) and Priyadarshini *et al.* (2023), who also recorded higher seed control yield with defoliant application at 60% boll opening stage.

Conclusion

The present investigation revealed that the hybrid effect (RCH-971 and RCH-929) was not significant,

indicating both cultivars responded similarly to defoliant treatments, likely due to comparable maturity and canopy architecture. Among the defoliant treatments, spraying Pyraflufen ethyl @ 1 ml L-1 at 60% boll opening stage demonstrated superior performance, recording the highest boll opening (89.3%) and seed cotton yield (2515 kg ha 1), significantly outperforming other treatments and the control. While defoliation was marginally higher with a two-time spray (at 60% and 80% boll opening), this approach led to yield reduction due to increased oxidative stress, disrupted sink-source balance, as reflected by compromised boll filling. Application defoliant (Pyraflufen ethyl @ 1 ml L⁻¹) at 60% boll opening appears optimal, striking a balance between efficient defoliation and physiological readiness of the crop for boll bursting. These insights have direct implications for improving mechanical harvesting readiness, fibre quality and operational efficiency in cotton cultivation, especially under high density planting systems.

References

Ashraf, A.A., Ragavan T. and Begam S.N. (2020). Standardize the dose and timing of defoliant application to facilitate synchronized maturity for mechanical harvesting of rainfed cotton (*Gossypium hirsutum*). *Indian J. Agron.*, **65(4)**, 444-450.

Awan, H.U., Awan I.U., Mansoor M., Khakwani A.A., Khan M.A., Ghazanfarullah and Khattak B. (2012). Effect of defoliant application at different stages of boll maturity and doses of sulfur on yield and quality of upland cotton. *Sarhad J. Agricult.*, **28**, 245-247.

Buttar, G.S. and Sudeep S. (2013). Effect of ethrel dose and time of application on growth, yield and duration of Bt cotton in semi arid region of Punjab. *J. Cotton Res. Develop.*, **27(1)**, 60-62.

N. Srikanth *et al.*

Copur, O., Demirel U., Polat R. and Gur M.A. (2010). Effect of different defoliants and application times on the yield and quality components of cotton in semi-arid conditions. *Afr. J. Biotechnol.*, **9**, 2095-2100.

- Cotton Corporation of India (2024). *Annual Cotton Statistics Report*. Retrieved from https://cotcorp.org.in
- Deol, J.S and Brar A.S. (2011). Effect of chemical defoliation on boll opening percentage, yield and quality parameters of Bt Cotton (*Gossypium hirsutum*). *Indian J. Agron.*, **56(1)**, 74-77.
- Gormus, O., El Sabagh A. and Kurt F. (2017). Impact of defoliation timings and leaf pubescence on yield and fiber quality of cotton. *J. Agricult. Sci. Tech.*, **19(4)**, 903-915.
- Griffin, J.L., Boudreaux J.M. and Miller D.K. (2010). Herbicides as harvest aids. *Weed Sci.*, **58(3)**, 355-358.
- Gunasekaran, M., Premalatha N., Kumar M., Mahalingam L., Sakthivel N., Senguttuvan K., Latha P., Meenakhshiganesan N., Rajeswari S. and Geetha S (2020). Cotton CO17-A short duration, high yielding compact variety suitable for high density planting system. *Elect. J. Plant Breed.*, **11(4)**, 993-1000.
- Jajoria, D.K., Sharma S.S., Sharma S.K and Narolia G (2020).
 Effect of chemical defoliation on boll opening and yield of cotton. *Int. J. Chem. Stud.*, 8(2), 1980-1983.
- Kumar, M., Premalatha N., Mahalingam L., Sakthivel N., Senguttuvan K. and Latha P. (2020). High density planting system of cotton in India: status and breeding strategies.

- In: Plant Breeding-Current and Future Views (Ed Ibrokhim Y. Abdurakhmonov). IntechOpen.
- Li, W., Wu B., Hu B., Wan Y., Wang J. and Jia M. (2024). Effects of Defoliation at different Fertility Stages on Material accumulation, Physiological Indices and Yield of Cotton. *Agriculture*, **14(2)**, 258.
- Miura, Y., Mabuchi T., Higashimura M. and Amanuma T. (2003). Development of a new herbicide, pyraflufen-ethyl. *J. Pest. Sci.*, **28**(2), 235-240.
- Morgan, P.W. (1969). Stimulation of ethylene evolution and abscission in cotton by 2-chloroethanephosphonic acid. *Plant Physiol.*, **44(3)**, 337-341.
- Nerkar, P.S., Gautam V.S. and Bedekar M.M. (2017). Evaluation of Techno-Economic Aspects of Mechanized Cotton Harvesting Process. *Int. J. Scientific Res. Sci. Technol.*, **3(2)**, 168-174.
- Priyadarshini, M., Kumar G.S., Nagabhushanam U. and Reddy K. (2023). Effect of different Doses and Scheduling time of Plant Growth Regulators and Defoliants on Growth and Yield of Cotton (*Gossypium hirsutum L.*) under High Density Planting System. *Int. J. Environ. Clim. Change*, **13(10)**, 2252-2260.
- Wright, S.D., Hutmacher R.B., Shrestha A., Banuelos G., Rios S., Hutmacher K., Munk D.S. and Keeley M.P. (2015). Impact of early defoliation on California Pima cotton boll opening, lint yield and quality. *J. Crop Improvement*, **29**(5), 528-541.